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Videos Developing a Conceptual Foundation for Calculus

● A Call for Active Classrooms

● Some Design Principles for Videos in Context

● Overview of Calculus 1 Video Sequence

● A Close Look:

● Constant Rate of Change to Derivative 

● Riemann Sums to FTOC

● Our Study (Analysis is Ongoing)



The National Situation in First Semester Calculus

Bressoud, Mesa, & Rasmussen, (2015)



The National Situation in First Semester Calculus
● 14,000+ students
● 213 institutions:
● Ph.D. granting in Mathematics
● Master’s granting in Mathematics (highest degree)
● Undergraduate (Bachelor’s highest mathematics degree)
● Two-Year Institutions

● 502 instructors

Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)



The National Situation in First Semester Calculus
● First semester calculus

student career goals

Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)



The National Situation in First Semester Calculus

Going into Calculus 1, what percentage of students expect to 
earn an A? At least a B?

34% 43% 54% 76%

Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)

Student expectations



The National Situation in First Semester Calculus
Student expectations
● 54% expected to earn an A in their Calculus course
● 93% expected to earn at least a B

Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)



The National Situation in First Semester Calculus
● Reality:

Drop / Fail (≤D) / Withdraw Rate?
18% 27% 34% 39%

Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)



The National Situation in First Semester Calculus
Reality:
● 27% overall drop-fail(≤D)-

withdraw rate

Bressoud, Carlson, Mesa, & Rasmussen, (2013); Bressoud, Mesa, & Rasmussen, (2015)



Leaving STEM
● Large Institutional Study, Students Earning a C or Better:

Thompson et al., (2007)

% of students ≥C in Calc 1 & required to take Calc 2 but not persisting?  
10% 20% 30% 40%



Leaving STEM
● Large Institutional Study, Students Earning a C or Better:

● 33% in Calc 1 with major requiring Calc 2 did not persist in Calc 2.

Thompson et al., (2007)



Leaving STEM
● Large Institutional Study, Students Earning a C or Better:

● 33% in Calc 1 with major requiring Calc 2 did not persist in Calc 2.

● Students were voluntarily leaving STEM because they were 
unsatisfied with classroom culture.

● “Most students are not engaged by lecture format”

Bressoud, (2012); Seymour & Hewitt, (1997); Thompson et al., (2007)



The Appeal
● Adopt student-centered active learning pedagogies to support 

student retention and success. 

● Professional mathematics associations recommending the 
adoption of active-learning strategies in all math classrooms.

● STEM disciplines recommending more problem-solving and in-
class activities with small groups.

Braun et al., (2016); Bressoud, Mesa, & Rasmussen, (2015); Freeman et. al, (2014); NAE, (2005); NRC, (2011);  & PCAST (2012)



Enter: The Calculus Videos Project (CVP)
● Video lessons provide an opportunity for instructors to create 

more student-centered active classrooms.
○ Save instructional time
○ Support flipped and blended instruction
○ Students are already using videos (e.g. Khan Academy, YouTube)

● Videos lessons can provide students the opportunity to 
engage with the dynamic nature of calculus

● COVID changes things… videos are essential for the online 
class environment. 



Informing Video Design: Resources on CalcVids.org



Informing Video Design

Intellectual Need

Quantitative Reasoning



Necessity Principle: Students are most likely to learn when they see a need 
for what we intend to teach them, where by “need” is meant intellectual 
need, as opposed to social or economic need.    -Guershon Harel (1998)

An internal 
drive 
experienced 
by a learner to 
solve a 
problem

Create 
disequilibrium, 
students feel need 
to…
• Compute
• Be efficient
• Organize ideas
• Find structure
• Understand 
• Explain
• Communicate

Intellectual Need



Informing Video Design

Intellectual Need

Quantitative Reasoning



A Thought Experiment: The Rover Problem
The Opportunity rover (pictured below) landed on Mars in 2004 and has been actively exploring the 
planet ever since. It is powered by solar cells. As the rover travels across the Martian surface, it kicks up 
dust, which accumulate on its solar cells. The amount of dust that it kicks up depended on the 
composition of the surface it was traveling over—a rockier surface kicks up less dust than a softer 
surface. When planning a path for the rover to follow, scientists need to know how far it might travel 
before too much dust accumulates on its solar panels. What does a 

student first 
encountering this 
problem, need to 
know?



A Thought Experiment: The Rover Problem
The Opportunity rover (pictured below) landed on Mars in 2004 and has been actively exploring the 
planet ever since. It is powered by solar cells. As the rover travels across the Martian surface, it kicks up 
dust, which accumulate on its solar cells. The amount of dust that it kicks up depended on the 
composition of the surface it was traveling over—a rockier surface kicks up less dust than a softer 
surface. When planning a path for the rover to follow, scientists need to know how far it might travel 
before too much dust accumulates on its solar panels. 

Composition
Position along path 

(km)
Amount of dust per distance 

traveled (mg/km)
Very sandy 0 1
Moderately sandy 20 1.5
Slightly sandy 40 2
Slightly rocky 60 2.5
Moderately rocky 80 3.5
Very rocky 100 6

What does a 
student first 
encountering this 
problem, need to 
know?

What if this table was provided?



A Thought Experiment: The Rover Problem
The Opportunity rover (pictured below) landed on Mars in 2004 and has been actively exploring the 
planet ever since. It is powered by solar cells. As the rover travels across the Martian surface, it kicks up 
dust, which accumulate on its solar cells. The amount of dust that it kicks up depended on the 
composition of the surface it was traveling over—a rockier surface kicks up less dust than a softer 
surface. When planning a path for the rover to follow, scientists need to know how far it might travel 
before too much dust accumulates on its solar panels. What does a 

student first 
encountering this 
problem, need to 
know?

! " = 6
"
50 + 1

mg/km

What if this formula was provided?



Informing Video Design: Quantitative Reasoning

To model mathematical phenomena, a student must first 
conceive of relevant measurable attributes (quantities) of the 
phenomena, relate these attributes to one another, and 
operate on these attributes (quantitative reasoning).

Smith & Thompson, (2007); Thompson, (1990, 2011)



Informing Video Design: Quantitative Reasoning
Quantitative reasoning is a characterization of the mental 
actions involved in conceptualizing situations in terms of 
quantities and quantitative relationships.

Smith & Thompson, (2007); Thompson, (1990, 2011)



Informing Video Design: Quantitative Reasoning
Covariational reasoning refers to the mental actions 
involved in coordinating the values of two varying quantities 
while attending to how these values change in relation to 
each other (Carlson et al., 2002).

Carlson et al., 2002; Saldanha & Thompson, 1998; Thompson & Carlson, 2017



Informing Video Design: Quantitative Reasoning

Our contextual videos

● Prompt students to identify and coordinate measurable attributes 
(i.e., quantities) as they covary

● Represent the relationship between covarying quantities symbolically, 
graphically, and numerically

● Attend to frames of reference and units of measure
● Emphasize quantitative (as opposed to arithmetic) operations



Our Videos
● ~30 video sets over different Calculus 1 topics

● 1-3 videos per set

● Over 50 videos
● Video Types: 

○ Conceptual
○ Procedural 
○ Need Inducing videos



Our Videos
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Procedural Videos: Sample Video (Product Rule)
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Video Sets: CROC to Limit Def. of the Derivative
● Constant Rate of Change (CROC) & Graphing CROC
● Varying Rates of Change & Graphing Varying Rates
● Average Rate of Change (AROC): 

Define AROC in terms of CROC

● Approximating Instantaneous Rates of Change: 
Using AROC over small interval

● Limit Definition of Derivative: 
Limit over shrinking interval to connect CROC with IROC



A Conceptual Development of Constant Rate
● First: A student must 

conceive the continuous  
variation of each quantity.

● Rate of change is constant if 
changes in quantities 
measure are proportional.

● Quantities’ measures require 
attention to point of 
reference.

● If the variance of f with respect 
to x is the constant rate m, 
then the amount of change 
of f is m times as much as the 
amount of change in x. 



Constant Rate to Average Rate
● Ave Rate is a 

constant rate… 
within an imagined 
situation/object to 
cover the same 
change in the 
dependent quantity 
over the same 
variation of the 
independent quantity



A Conceptual Development of Derivative
● Leverage constant rate 

of change.
● Derivative as limit of 

average rates.
● For intervals small 

enough, a function 
varies at essentially a 
constant rate.

● Over small enough 
intervals, the amount of 
change in f is f ’(a) times 
as much as as the 
change in x. 
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A Conceptual Development of Derivative
● Leverage constant rate 

of change.
● Derivative as limit of 
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A Conceptual Development of Derivative
● Leverage constant rate 

of change.
● Derivative as limit of 

average rates.
● For intervals small 

enough, a function 
varies at essentially a 
constant rate.

● Over small enough 
intervals, the amount of 
change in f is f ’(a) times 
as much as as the 
change in x. Elapsed time (seconds)
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Constant Rate of Change as a Foundation for Ideas
● A mature understanding of rate relies upon developed images of 

continuous variation that include two quantities and how they covary. 
● Quantity: Measurable attribute of an object 

○ Speed: Distance & Time 
○ Container: Volume and Height
○ Etc.

● Rate: Defines a proportional relationship between varying quantities’ 
measures.



Constant Rate of Change as a Foundation for Ideas
● Instantaneous rates of change (derivatives) are defined as limit of 

average rates of change. 
● An average rate of change of a function over an interval is the constant 

rate of change of a linear function (slope of secant line) over the same 
interval.

● When zooming to illustrate derivatives, we observe that for intervals 
small enough, a differentiable function varies at essentially a constant 
rate (linear).

● Riemann sums in context includes imagining a varying rate as if it is 
constant over successive small intervals. 
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Riemann Sums to FTOC Conceptual Development
● Computing accumulation when rate is non-constant
● Riemann Sums 
○ Are not (defined as) “area under the curve”
○ Are approximations of accumulation of a quantity 

over an interval of another quantities’ variation
● Definite integrals are exact accumulation of quantities



Riemann Sums to Fundamental Theorem
● Begin by assuming rate is constant over 

successive uniform intervals of the 
independent quantity’s variation. 



Riemann Sums to Fundamental Theorem
● Calculated approximations to the 

accumulations each intervals of the 
independent quantity’s variation and add.



Riemann Sums to Fundamental Theorem
● Calculated approximations to the 

accumulations each intervals of the 
independent quantity’s variation and add.



Riemann Sums to Fundamental Theorem
● Graph an imagined rover where rate is 

constant over successive uniform intervals of 
the independent quantity’s variation.



Riemann Sums to Fundamental Theorem
● Approximations are made more precise by 

including more divisions of interval over 
which the independent quantity varies.



Riemann Sums to Fundamental Theorem
● With corresponding error.



Riemann Sums to Fundamental Theorem
● Made exact through the limit. 
● The definite integral emerges as a model of 

the total accumulation.



to Fundamental Theorem
● Leverage constant rate of change over these intervals
○ Δf ≈ f’(a) Δx.
○ Total accumulation is approximated by the sum of 

accumulations over these intervals.

Linear Approximations
over successive intervals



to Fundamental Theorem
● Leverage constant rate of change over these intervals
○ Δf ≈ f’(a) Δx.
○ Total accumulation is approximated by the sum of 

accumulations over these intervals.

Cumulative Affect of 
Exclusively Using Linear 
Approximation Over the 
Entire Variation of the 
Independent Quantity



to Fundamental Theorem
● Leverage constant rate of change over these intervals
○ Δf ≈ f’(a) Δx.
○ Total accumulation is approximated by the sum of 

accumulations over these intervals.

Linear Approximations 
Made More Precise by 
Using Smaller Intervals 

Riemann Sum of 
the Rate Function, A’



to Fundamental Theorem
● Leverage constant rate of change over these intervals
○ Δf ≈ f’(a) Δx.
○ Total accumulation is approximated by the sum of 

accumulations over these intervals.

Total Accumulation is 
the Limit of These 
Riemann Sums = 

Definite Integral of Rate 
Function



Riemann Sums to Fundamental Theorem
● Assume rate is constant over successive uniform intervals of the independent 

quantity’s variation. 
● Total accumulation is approximated by the sum of accumulations over these intervals.
● Smaller intervals over which rate is assumed constant can yield better approximations 

to total accumulation.
● The exact total accumulation is the change in the values of an antiderivative.



Our Ongoing Research Study
● Demographics

○ Two semesters (fall and spring)
○ 25 instructors providing data 
○ 35+ instructors used the videos
○ 19 institutions
○ 817 first-semester calculus students

■ 276 students indicated they had NOT previously taken college calculus
■ 64 said yes
■ 477 did not answer



Our Ongoing Research Study
● Method

○ Basic Demographic Questions
○ Pre-Test & Posttest Questions per video
○ Gain Scores
○ Different treatments (briefly mention)

■ Intellectual Need (IN) Video, or IN Task, or Both
■ Outline
■ Control

○ Interviews (not this talk)
○ 4 video sets
○ Eye-tracking 



Big Picture Results
● Students tended to do better on post-video questions than pre-video 

questions
● Students who saw video 0s did no differently than students who saw 

nothing (control)
● Students who saw the video outline did better than students who saw 

nothing (control)
● Students who saw the intellection need task did no differently than 

students who did not



Exploratory Results: Pre-Test/Posttest Gains by 
Video

WARNING: LEARING IS HARD
Results do not provide a “magical” solution.



 

 

 
Video Set % gains  
02_Constant Rate of Change 0.09410796443 
03_Graphing Constant Rate of Change 2.758162701 
04_Varying Rates of Change 2.346235682 
05_Graphing Varying Rates of Change -37.16455455 
06_Average Rate of Change 24.40808495 
07_Approximating Instantaneous Rates of Change -4.420676393 
08_Continuity 16.86746633 
09_Differentiability and Local Linearity 8.662020997 
13_Limit Definition of Derivative 3.52595059 
14_Using the Limit Definition of Derivative 15.65297126 
15_Interpreting Derivatives 17.7244582 
16_Secant Lines and Tangent Lines 3.560805715 
17_Graphing Derivatives -7.780228009 
18_Basic Derivative Rules 6.4758283 
19_Product Rule 21.22959151 
20_Quotient Rule 35.08325361 
21_Chain Rule 32.74714851 
22_LHopitals Rule 4.220311123 
23_Mean Value Theorem 23.06008474 
24_Related Rates 25.24950305 
25_Implicit Differentiation 24.03473078 
26_Optimization Intro 8.221186972 
27_Optimization Modeling 9.912898969 
28_Riemann Sums Introduction 59.81554315 
29_Riemann Sums Notation 1.451189394 
30_Definite Integrals 19.83100348 
31_Antiderivatives 34.93603198 
32_FTOC 1 - Integrals are Antiderivatives -7.1864812 
33_FTOC 2 - variable in bounds 23.33333333 
34_U_Substitution 5.493561979 
 

● Results are mixed BUT…
● Students tended to do 

better on post-video 
questions than pre-video 
questions

Lowest: Why?
• Mismatch between video 

content and questions? 
• Bad video? We hope not.
• Post video questions were 

too difficult? 
• Etc.

Highest: Why?
• See list for lowest but replace

“difficult” with easy. We argue
this is not the case. 

• More interesting content.
• More to learn.

• Etc.



Exploratory Results: Gains by Instructor

INSTRUTION MATTERS!!!



 

 

 

Instructor % gains  

Instructor 1 11.8382241 

Instructor 2 0.1417941176 

Instructor 3 11.41734289 

Instructor 4 11.76520975 

Instructor 5 4.010497449 

Instructor 6 -1.152676516 

Instructor 7 11.35070596 

Instructor 8 10.59812657 

Instructor 9 8.416074799 

Instructor 10 7.07258658 

Instructor 11 11.45520357 

Instructor 12 15.71467571 

Instructor 13 15.46328279 

Instructor 14 18.78133096 

Instructor 15 8.53589295 

Instructor 16 7.58287143 

Instructor 17 12.07571955 

Instructor 18 11.34287339 

Instructor 19 14.45395824 

Instructor 20 10.32209866 

Instructor 21 10.30958626 

Instructor 22 10.02749633 

Instructor 23 7.415725806 

Instructor 24 3.127320619 

Instructor 25 12.53074494 
 

● Results vary by instructor.

Highest Gains: Why?
• Very involved instructors.

• Integrated videos into 
classroom (not merely 

homework assignments)
• Knowledgeable of QR



I am Instructor 13: 
Why did my class have higher gains? 

● Integrated into what I did during class (pre-COVID). 

○ Videos were assigned prior to class and we discussed videos during class. 

○ Videos were for a grade. 

○ Content from videos might show up on quizzes and exams. 



Higher gains during COVID? LMS Integration 



Higher gains during COVID? LMS Integration 



Concluding Remarks
● Reasoning about quantities, including amounts of change, and how they co-

vary can be leveraged to provide a reasonable explanation for calculus 
concepts and important theorems.
○ Know your audience. They are likely NOT mathematics majors. They are STEM majors who need 

to reason rigorously but this not mean they need formal proof.

● The video format provides alternative ways in which content can be presented 
dynamically. This allows for ”real-time” demonstrations of the variation 
inherent in most calculus problems. 

● Videos can provide opportunity to create a more active classroom by moving 
some instruction outside of class BUT…

● How you integrate the videos into your classroom may be the single most
important factor influencing student learning of the content presented in 
videos.
○ Merely assigning the videos, may result in no tangible learning gains.



THANK YOU

JASON MARTIN
University of Central Arkansas

jasonm@uca.edu
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